一文追溯 ETL 的发展历程
在这篇文章里,我们将追溯传统的ETL架构,然后看看现代ETL发展过程中的重大事件。作者 |Ramindu De Silva译者 | 弯月,责编 | 郭...

在这篇文章里,我们将追溯传统的ETL架构,然后看看现代ETL发展过程中的重大事件。

作者 | Ramindu De Silva
译者 | 弯月,责编 | 郭芮
头图 | CSDN 下载自东方 IC
出品 | CSDN(ID:CSDNnews)
以下为译文:
ETL是什么?
ETL是Extract(提取)、Transformation(转换)和Load(加载)的首字母缩写。简而言之,ETL就是在两个位置之间拷贝数据。
- 
   Extract(提取):从不同类型的数据源(包括数据库)读取数据。 
- 
   Transform(转换):将提取的数据转换成特定的格式。转换还包括使用系统中其他数据来丰富数据内容。 
- 
   Load(加载):将数据写入到目标数据库、数据仓库或者另一个系统中。 
根据基础设施的不同,ETL可以划分为两大类。

传统ETL
以前,数据通常都保存在操作系统、文件和数据仓库中。每天,数据都要在这些位置之间移动多次。ETL工具和脚本都是现写现用。

传统ETL的工作流
这个架构非常难以管理,而且非常复杂。下面是传统ETL架构的一些缺点:
- 
   数据库、文件和数据仓库之间的处理以批次进行。 
- 
   目前,大多数公司都需要分析并操作实时数据。但是,传统的工具不适合分析日志、传感器数据、测量数据等。 
- 
   非常大的领域数据模型需要全局的结构。 
- 
   传统ETL处理非常慢、非常耗时,而且需要大量资源。 
- 
   传统架构仅关注已有的技术。因此,每次引入新的技术,应用程序和工具都要重新编写。 
随着时间一天天过去,大数据改变了处理的顺序。数据先提取并加载到一个仓库中,并以原始格式保存。每当数据分析师或其他系统需要数据时再进行转换。这个过程叫做ELT。不过这个过程最适合在数据仓库中进行处理。如Oracle Data Integration Platform Cloud等系统提供了该功能。

ETL的现状
与十年前相比,当今世界的数据和处理状况已经发生了巨大的变化。使用传统ETL过程处理现代数据已经力不从心。部分原因如下:
- 
   现代数据处理通常包括实时数据的处理,而且组织也需要对处理过程的实时洞察。 
- 
   系统需要在数据流上执行ETL,不能使用批处理,而且应该能够自动伸缩以处理更高的数据流量。 
- 
   一些单服务器的数据库已经被分布式数据平台(如Cassandra、MongoDB、Elasticsearch、SAAS应用程序等)、消息传递机制(Kafka、ActiveMQ等)和几种其他类型的端点代替。 
- 
   系统应该能够以可管理的方式加入额外的数据源或目的地。 
- 
   应当避免由于“现写现用”的架构导致的重复数据处理。 
- 
   改变数据捕获技术的方式,从要求传统ETL与之集成,变成支持传统操作。 
- 
   数据源多样化,而且需要考虑新需求的可维护性。 
- 
   源和目标端点应该与业务逻辑解耦合。使用数据映射层,将新的源和端点无缝地衔接,而且不影响数据转换过程。 

数据映射层
- 
   接收到的数据应当在转换(或执行业务规则)之前进行标准化。 
- 
   数据应该在转换之后、发布到端点之前转换成特定的格式。 
- 
   数据清理并不是现代世界中唯一的数据转换过程。数据转换还需要满足组织的许多业务需求。 
- 
   目前的数据处理通常包含过滤、连接、聚合、序列、模式和丰富化,以执行复杂的业务逻辑。 

数据处理过程

拯救世界的流式ETL
新的数据需求是驱动组织前进的动力。许多组织中的绝大多数传统系统依然能够运行,这些系统使用的都是数据库和文件系统。这些组织也在尝试新的系统和新技术。这些技术能够处理大数据和增长和更快的数据速率(如每秒上万条记录),如Kafka、ActiveMQ等。
使用流式ETL继承架构,组织不需要计划、设计并实现一个复杂的架构,就能填补传统系统和现代系统之间的空白。流式ETL架构师可伸缩的、可管理的,还能处理大容量、结构多样的实时数据。
将数据提取和加载从数据转换中解耦合,就构成了源-目的地模型,该模型可以让系统与未来的新技术向前兼容。这个功能可以通过许多系统实现,如Apache Kafka(配合KSQL)、Talend、Hazelcast、Striim和WS02 Streaming Integrator(配合Siddhi IO)。

现代ETL功能
如上所述,传统系统通常将所有数据都放到数据库和文件系统中,以便进行批处理。这个场景说明了为何传统的事件源(如文件、改变数据捕获(Change Data Capture,简称CDC))要与新的流式集成平台集成。
我们来考虑一个工厂中的实际应用场景,它有以下功能。
传统系统:
- 
   将所有生产数据放到文件系统和数据库中,数据的格式各异。 
- 
   每小时或每天对数据进行处理。 
- 
   处理来自CDC的事件。 
- 
   处理新系统通过HTTP收到的以事件为中心的数据。 
- 
   将处理过的事件发送到多个目的地。 
- 
   监视当前的库存,在需要新库存的时候发送通知。 
- 
   使用库存数量查看分析结果。 
传统的ETL工具:
- 
   下述处理的ETL逻辑是重复的: 
- 
   对于每个结构不同的文件和数据库。 
- 
   当目标或源端点的数量增加时。 
- 
   重复的业务逻辑很难管理和伸缩。 
- 
   分析和监视所需的数据计算是重复的。 
流式平台架构如何解决现代ETL问题:

现代流式平台的工作流
- 
   源(例如文件、CDC、HTTP)和目标端点(如Kafka、Elasticsearch、Email)从处理过程中解耦合: 
- 
   目标、源和存储API连接到多个数据源。 
- 
   即使源和目标中的数据结构不同,数据映射(如data mapper)层和流SQL(如Query1)也会把从多个源接收到的事件转换成通用的源定义(如Stream1),以便以后进行处理。 
- 
   流平台架构可以连接传统类型的数据源(如文件和CDC),和广泛应用的现代数据源(如HTTP)。 
- 
   传统系统和现代系统生成的事件都用同一个工作流进行接收和分析。 
- 
   聚合(如Aggregation1)按照每分钟、每小时等频率针对需要的属性进行计算。 
- 
   数据随时按需进行汇总,不需要对整个数据集进行处理和汇总。应用程序和可视化、监视工具可以通过提供的API访问汇总后的数据。 
- 
   可以无缝地添加并改变一个或多个业务逻辑(如BusinessRule1)。 
- 
   可以添加任何逻辑,而无需改变已有组件。如上例中,根据BusinessRule1,当紧急程度升高时,就会触发一条Email消息。 
通过上述架构,我们可以看到为了ETL数据处理,流式平台与传统系统集成,如文件、CDC与使用Kafka和HTTP的现代系统的结合。
原文:https://dzone.com/articles/etl-and-how-it-changed-over-time
本文为CSDN翻译文章,转载请注明出处。
【End】

推荐阅读
☞2020,国产AI开源框架“亮剑”TensorFlow、PyTorch
☞1 分钟抗住 10 亿请求!某些 App 怎么做到的? | 原力计划

你点的每一个在看,我认真当成了喜欢
更多推荐
 
 



所有评论(0)