作者 | luanhz

责编 | 郭芮

本文对MySQL中几种常用的模糊搜索方式进行了介绍,包括LIKE通配符、RegExp正则匹配、内置字符串函数以及全文索引,最后给出了性能对比。

引言

MySQL根据不同的应用场景,支持的模糊搜索方式有多种,例如应用最广泛的可能是Like匹配和RegExp正则匹配,二者虽然用法和原理都很相似,但实际上匹配原则却不尽相同,其中Like要求模式串与整个目标字段完全匹配才检索该记录,而RegExp则是要求目标字段包含模式串即可。

对于简单的判断模式串是否存在类型的模糊搜索,应用MySQL内置函数即可实现,例如Instr()、Locate()、Position()等。

当然,提到MySQL查询性能就不得不提到索引,对于字段模糊查询需求,我们也可以考虑添加全文索引(Fulltext)。

注:本文所用MySQL版本8.0.19,可视化工具Navicat Primium。

4种模糊查询

为了便于描述和测试不同模糊查询方式结果,首先给出一个简单的测试用数据表tests如下:

其中,tests表仅含有一个名为words的字段,并对该字段添加全文索引。表中共有6条记录。

Like

Like算作MySQL中的谓词,其应用与is、=、>和<等符号用法类似。Like主要支持两种通配符,分别是"_"和"%",其中前者代表匹配1个任意字符,常用于充当占位符;而后者代表匹配0个或多个任意字符。从某种意义上讲,Like可看作是一个精简的正则表达式功能。

例如,在如上表中查找所有以"hello"开头的记录,则其SQL语句为:

1SELECT words FROM tests WHERE words LIKE 'hello%';

查询结果:

如果想查找所有以"hello"开头且至少含有6个字符的记录,则可简单修改SQL语句如下:

1SELECT words FROM tests WHERE words LIKE 'hello_%';

查询结果:

另外:当在Like模式字段中,若不包含任何"_"和"%"通配符,则等价于"=",表示精确匹配,例如查询语句……Like "hello",则仅返回hello一条记录;还可在Like前加限定词Not,表示结果取反。

RegExp

正则表达式具有庞大而丰富的语法,MySQL语法中支持绝大部分正则表达式功能,几乎可以满足所有需求。本文不过多展开正则表达式相关介绍,仅在Like的基础上,简单介绍其与Like模糊搜索方式的区别。

如前所述,Like匹配原则是要求模式串与整个目标字段匹配时,才返回该条记录;而RegExp中则是当目标字段包含模式串时即返回该条记录。例如如下SQL语句将返回所有包含"hello"的记录:

1SELECT words FROM tests WHERE words REGEXP 'hello';

而在Like中这样的写法仅返回记录="hello"的记录。为了限定正则表达式以某个模式串开头或者结尾,可以通过添加"^"和"$"标识符来限定,例如仍然搜索以"hello"开头的目标字段,则其SQL语句为:

1SELECT words FROM tests WHERE words REGEXP '^hello';

内置函数

对于包含某些特定模式串的模糊搜索,可以通过MySQL内置函数实现。可以完成这一功能的函数包括Instr()、Locate()和Position()等,其功能语法很相近,均是返回子串在字符串中的索引,且索引下标从1开始,当子串不存在是返回0。需要注意的是三个函数中子串和字符串的先后顺序是不一致的。例如以下语句均成功检索,且返回目标索引1

1SELECT INSTR("hello,world", 'hello');-- 1
2SELECT LOCATE('hello', "hello,world");-- 1
3SELECT POSITION('hello' in "hello, world"); -- 1

应用以上3个内置函数,搜索上述测试表中包含"hello"的记录,则相应SQL语句为:

1SELECT words  FROM tests WHERE INSTR(words, 'hello');
2SELECT words  FROM tests WHERE LOCATE('hello', words);
3SELECT words  FROM tests WHERE POSITION('hello' in words);

全文索引

抛开索引谈查询性能,都是耍流氓!

全文索引是MySQL中索引的一种,曾经仅在引擎为MyISAM的表中支持,从5.6版本开始在InnoDB中也开始支持全文索引,支持的字段格式包括CHAR、VARCHAR和TEXT。在如上已经添加了全文索引的tests表中,仍然查询包含"hello"的记录,应用全文索引查询的SQL语句为:

1SELECT words FROM tests WHERE MATCH(words) against('hello');

实际上,MATCH(words) against('hello')返回的是字段words对目标字符"hello"的匹配程度:当不存在任何匹配结果时,返回0;否则,根据匹配次数的多少和位置先后返回一个匹配度。例如,如下SQL语句返回表中每条记录对目标字段"hello"的匹配度:

1SELECT MATCH(words) against('hello') FROM tests;

返回结果如下:

查询性能对比

为了对比以上4种模糊搜索方式的性能,我们这里构建一个规模较大且更具一般性的数据表。本文选择采集若干条英文格言,用于创建目标数据库。

创建数据表

为简单起见,仅创建一个名为says的字段,且对其添加全文索引。

1CREATE TABLE IF NOT EXISTS sayings(says TEXT, FULLTEXT (says));

英文格言信息获取

在网上找了个英文格言的网站,并写了一个python小爬虫爬取页面全部300条英文格言,爬虫源码如下(为了增加记录条数,将300条记录重写100词,即数据库中包含30000条记录):

 1from pyquery import PyQuery  as pq
 2from pymysql import connect
 3
 4doc = pq(url='http://www.1juzi.com/new/43141.html', encoding = 'gb18030')
 5items=doc("div.content>p:nth-child(2n+1)").items()
 6hots = [item.text() for item in items]
 7with connect(host="localhost", user="root", password="123456", db='teststr', charset='utf8') as cur:
 8    sql_insert = 'insert into sayings values (%s);'
 9    for _ in range(100):
10        cur.executemany(sql_insert, hots)

对爬取的英文短句写入创建的数据表中,结果如下:

既然是英文励志格言短句,那么我们就来查询其中包括"success"的记录。

首先查询语句中任意位置包含"success"的记录,4种方式SQL语句及执行时间为:

 1-- LIKE通配符
 2SELECT says FROM sayings WHERE says LIKE '%success%'
 3> OK
 4> 时间: 0.036s
 5
 6-- REGEXP正则匹配
 7SELECT says FROM sayings WHERE says REGEXP 'success'
 8> OK
 9> 时间: 0.053s
10
11-- 内置函数查找
12SELECT says FROM sayings WHERE INSTR(says, 'success')
13> OK
14> 时间: 0.045s
15
16SELECT says FROM sayings WHERE LOCATE('success', says)
17> OK
18> 时间: 0.044s
19
20SELECT says FROM sayings WHERE POSITION('success' in says)
21> OK
22> 时间: 0.047s
23
24-- 全文索引
25SELECT says FROM sayings WHERE MATCH(says) against('Success')
26> OK
27> 时间: 0.006s

可见,全文索引速度最宽,领先其他方式接近一个量级;Like通配符速度其次,但与其他几种查询方式效率相差不大。

通过Explain查询计划,我们可以发现全文索引方式由于应用了索引而无需全表查询,所以执行速度快,而其他三种模糊查询方式均为执行全表查询。

全文索引查询计划

Like通配符查询计划

实际上,对于添加索引的字段应用Like查询时,可以应用索引加速查询,为勒验证全文索引条件下是否仍然可以应用索引,我们进行第二组性能测试:

查询语句中以"success"开头的记录(全文索引方式不支持指定单词开头的查询任务),相应SQL语句即执行时间如下:

 1SELECT says FROM sayings WHERE says LIKE 'success%'
 2> OK
 3> 时间: 0.015s
 4
 5SELECT says FROM sayings WHERE says REGEXP '^success'
 6> OK
 7> 时间: 0.046s
 8
 9SELECT says FROM sayings WHERE INSTR(says, 'success')=1
10> OK
11> 时间: 0.042s
12
13SELECT says FROM sayings WHERE LOCATE('success', says)=1
14> OK
15> 时间: 0.051s
16
17SELECT says FROM sayings WHERE POSITION('success' in says)=1
18> OK
19> 时间: 0.049s
20
21SELECT says FROM sayings WHERE MATCH(says) against('Success')
22> OK
23> 时间: 0.007s

可以看到,修改后的Like查询效率提升明显,并大幅超过其他方式。但解释查询计划发现,虽然possible_key显示了索引字段,但实际仍然未应用任何索引(key为null),即仍然进行全表查询(Type = All)。之所以带来速度上的大幅提升,仅仅是因为对'success%'要比'%success%'执行字符串匹配要快得多(后者要整列匹配,前者仅需匹配开头的单词即可),而与索引无关。

Like'success%'仍然无法应用全文索引

所以,得到的结论是Like通配符无法有效利用全文索引加速查询,但在特定模式下的查询速度可快于通配符%模式下的查询。

总结

本文探讨了MySQL中4中模糊查询方式,包括:

  • Like通配符用于查询目标字段与模式串完全匹配的记录,且无法应用全文索引提高查询速度,但以特定字符开头的模糊查询比以"%"开头时速度提升明显;

  • RegExp正则表达式功能强大,可实现任意模式查询,但执行效率一般;

  • 简单的子串有无查询还可应用MySQL内置函数,包括Instr()、Locate()和Position()等,用法相近,但效率一般;

  • 对于包含全文索引的目标字段查询,应用全文索引查询效率最高,但可定制性差,不支持任意匹配查询;

  • 记录数目较少时,几种查询方式效率均可接受,可根据任务需求灵活选用。

声明:本文为作者投稿,版权归其所有。

【END】

今日福利

遇见大咖

由 CSDN 全新专为技术人打造的高端对话栏目《大咖来了》来啦!

CSDN 创始人&董事长、极客帮创投创始合伙人蒋涛携手京东集团技术副总裁、IEEE Fellow、京东人工智能研究院常务副院长、深度学习及语音和语言实验室负责人何晓冬,来也科技 CTO 胡一川,共话中国 AI 应用元年来了,开发者及企业的路径及发展方向!

戳链接或点击阅读原文,直达报名:https://t.csdnimg.cn/uZfQ

Logo

20年前,《新程序员》创刊时,我们的心愿是全面关注程序员成长,中国将拥有新一代世界级的程序员。20年后的今天,我们有了新的使命:助力中国IT技术人成长,成就一亿技术人!

更多推荐